The cheapest way to scale up wind and solar energy? High-tech power lines

 

electricity towers

Christopher Clack, National Oceanic and Atmospheric Administration

Wind power and solar power are ways to reduce carbon emissions, but these generation sources are dependent on the vagaries of the weather, which means neither wind nor solar can produce electricity on-demand at all hours of the day. This variability has led many to assume that greatly expanding wind and solar to reduce carbon emissions will cause electricity costs to skyrocket and require expensive energy storage.

My colleagues and I have just published a new study to show that this assumption is not correct. In fact, if the U.S. were to move to a national 48-state electric system, rather than the regional one in place now, the country would be able to transport more renewable energy around the country. That change could reduce CO2 by 78 percent at lower costs than today without using any storage technologies.

Using a computer model, we found that this larger electric system would utilize power more efficiently regardless of the generators within it. The cost reduction between the national style system we modeled and the current one, which is divided into about 130 regions, is US$47 billion per year. That translates into an electricity cost of between 8.5 and 10.2¢ per kilowatt-hour (kWh), compared to the current national average of 12.7 cents per kWh.

Electron superhighway

Our study was based upon a model called the National Energy with Weather System (NEWS) simulator. The NEWS simulator is a cost optimization model that relentlessly seeks the lowest-cost solution.

It includes features of the electric grid, such as transmission, generators, electric demand, land use constraints, generator behavior, weather data and cost data for generators. To figure out how to minimize costs, the NEWS model will calculate how to supply power every single hour for an entire year based on the available generators and transmission lines that transport power long distances.

Our model had something unique, though: a high-voltage direct current (HVDC) transmission overlay.

In concept, this is very similar to the interstate highway system overlaid upon the road network. HVDC technology has one big advantage over traditional power lines: there is less energy lost in transporting power from one point to another. It does this by using direct current, rather than alternating current, and operating at higher voltages.

HVDC is being used in the U.S. today. However, it is being deployed as a point-to-point system for single (or a few) generators to distant markets. One of the most prominent is called the Pacific DC intertie, which ships power from the Pacific Northwest, with its abundant hydropower, down to Los Angeles, supplying 48 percent of power during hours of peak demand. The difference in the NEWS model is that HVDC is deployed in a network, instead of a simple point-to-point configuration, which allows much greater utilization of the lines for power to flow between regions in multiple directions.

HRRR Australia

Wind power potential estimates for the U.S. Red indicates high potential, blue is low.
Chris Clack / CIRES, Author provided

Critically, the NEWS model doesn’t assume that more transmission lines should be added to the current grid. But it does introduce new transmission capacity if the model deems it economical. Interestingly, the NEWS model always selects HVDC transmission when it can. Why? The availability of HVDC lines allows bigger markets to form, which then benefit from economies of scale.

In practice, this would mean that wind generators in the Plains states, for instance, could export more power to places in the country where there is strong demand, such as big cities. As it is now, wind generators only support power regionally and sometimes supply more power than is needed at some hours of the day.

In a regional system, one that is the size of, say, Kansas, wind and solar tends to be periods of over production periods and under production. This results in increased costs because wind and solar generators need to curtailed, or turned off, during over production. To meet lapses in production, grid operators need to rely on back up generation from fossil fuel plants.

With a national system, the generators can be strategically placed over the contiguous U.S. to reduce this effect and lower the overall costs. The HVDC facilitates the movement of this electricity from distant reaches to cities with lower losses than traditional AC.

Renewables scenario

To perform the study, high-resolution weather data were compiled for each hour of the three years from 2006 through 2008. The weather data were then used as inputs into sophisticated power algorithms to estimate the power that could be generated by wind turbines and solar PV panels across the U.S.

Additionally, we compiled data on electricity demand during those times across the U.S. The data were needed because weather is a fundamental driver of the electric demand. Then we projected demand data to 2030.

Because the deployment of wind and solar is subject to many constraints, we built land use considerations into the model. A land use data set was compiled to identify locations where the wind and solar can be deployed without interfering with protected lands.

Using these different sets of data along with the projected cost for power generation in 2030, we ran different simulations to investigate how these factors would affect the mix of power generators regionally while minimizing total cost.

The scenario that cuts emissions most has significant wind and solar PV deployed; 523 gigawatts (GW) of wind and 371 gigawatts of solar PV compared with 60 GW and 2.5 GW, respectively, in 2012. In this scenario, there was only 461 GW of natural gas (less than today).

This translates to 38 percent of electricity coming from wind, 17 percent from solar, 21 percent from natural gas and the remainder from nuclear and hydroelectric. In 2012, wind accounted for 3.5 percent, solar for less than 1 percent and natural gas for 30 percent.

Again, this solution is the cheapest possible solution.

To get to this level of solar and wind – a significant jump from today’s levels – does require new transmission lines in the model.

The amount of new HVDC transmission that is built by the model is 139 million MW-miles, which is a big infrastructure undertaking. This sounds like a huge amount, but it would represent only 4 percent of the total cost of the system annually.

What about energy storage?

The NEWS model is unique in the study of integrating higher levels of wind and solar because it handles huge volumes of weather data, while computing the important aspects of the electric grid such as ramping constraints on generators, down times for generators, power flow in the transmission lines, electric losses shuffling power around the system, meeting demand at each hour in every market and other operating constraints. Further, the model doesn’t exclude any technologies; it seeks only the lowest-cost options.

Electricity can be stored in a number of ways, such as pumping and releasing water from reservoirs or installing large battery banks. In initial model runs, electric storage was not competitive using cost estimates for 2030 compared to adding transmission or natural gas generators (purely based upon cost).

Electricity Power Source

A battery bank used to store electricity from the grid.
U.S. Department of Energy

The NEWS model is a tool to help understand how an electric grid could be transformed while keeping costs low. Low cost is absolutely essential because increasing energy costs to reduce carbon reductions can cause economic hardships.

There are numerous headwinds to the development of a decarbonized economy and society. But, the NEWS model has shown that wind and solar PV, combined with high-voltage direct current transmission, can actually go a long way in reducing emissions in the electric sector.

This is true even without a new miracle battery or innovation within the electric storage industry, although cheap, effective electric storage would be helpful in integrating renewables.

To remove carbon from the entire economy, electricity must be decarbonized first. If it can be done at low cost, then other sectors will be able to follow suit. Combining wind, solar, natural gas and transmission is a possible bridge to a zero emissions future.

The Conversation

Christopher Clack, Research Scientist, National Oceanic and Atmospheric Administration

This article was originally published on The Conversation. Read the original article.

 

Take our Solar Quiz Compare Energy Providers and Save

Download Your FREE Beginner’s Guide To Solar Power!

Beginners Guide to Solar Power

If you’re considering solar for your property or just looking to maximise the savings for your solar system, download a FREE copy of our "Beginner’s Guide To Solar Power".

Become an expert and better understand the ins and outs of solar power and solar PV systems for your property.

Includes detailed explanations and diagrams of the various types of solar systems and their parts, solar battery storage systems, Government incentives, expected ROI periods, finance, energy saving tips and more!

Download Your Free Copy Now!

Latest blog & information

X

Please provide your email address so that we can send your free copy of "Beginner’s Guide To Solar Power".

* By clicking "Send me a copy" I agree to the terms in TQC’s privacy policy.

Thank you

We have emailed your copy of "Beginner’s Guide To Solar Power".

If your guide does not appear in your inbox ensure that you have provided the correct email address or check your junk/spam folder.

This message will close in 10 seconds or

Close and back to page
X

Understanding Batteries

Off-Grid Systems

For some households a battery system can be of great benefit and minimise a home’s reliance on the grid. However, it’s important to understand for a battery to be useful your solar system needs to be generating excess energy for the battery to store, which you can then use at night or when the sun is not out.

When selecting a battery, you’ll want to invest in a system that is most suited to your home and can drive the best return on investment (ROI). Despite a larger upfront cost, a higher quality battery may significantly increase your ROI.

    Battery systems start from $6,000 and costs can vary greatly based on the following factors:

  1. Cycle Life-Time

    The number of times a battery can fully charge and discharge.

  2. Battery Power (kW)

    How fast it can be charged or discharged.

  3. Storage Capacity (kWh)

    The maximum amount of energy a battery system can store.

  4. Battery Management System (BMS)

    An electronic ‘smart’ system that gathers data and manages the battery ensuring it does not overload or operate outside of its safe functioning zone..

  5. Inverter

    Battery systems require their own inverter if your solar system does not have a hybrid inverter.

  6. 'All-In-One Unit’

    A system which includes the battery, BMS and an inverter all in one unit.

  7. Warranty

    Length of time or cycles the battery system is under guarantee.

  8. Blackout Protection/Backup

    It’s important to note this is not a common feature of a battery system and could cost thousands of dollars to include. Blackout protection not only requires additional components but also a specialised installation and rewiring. For grid-connected homes, the cost for blackout protection can outweigh the benefit.

Additionally, if your purpose for adding battery is to go Off-Grid and become completely independent from the grid you will need to ensure your solar system can generate enough energy to power your home and your battery system is large enough to store this energy. For homes in metro areas going Off-grid is not cost effective and is only recommended for those in remote areas with limited access to the grid. Off-grid solar systems with battery start at approximately $30,000.
 

Find the solar system that suits you & its price in 2 mins

Take Our Solar Quiz Take Our Solar Quiz!