Solar households to lose subsidies, but it’s a bright future for the industry

 

Solar households in Victoria, South Australia and New South Wales will this year cease to be paid for power they export into the electricity grid. In South Australia, some households will lose 16 cents per kilowatt-hour (c/kWh) from September 31. Some Victorian households will lose 25 c/kWh, and all NSW households will stop receiving payments from December 31.

These “feed-in tariffs” were employed to kick-start the Australian solar photovoltaic (PV) industry. They offered high payments for electricity fed back into the grid from roof-mounted PV systems. These varied from state to state and time to time.

For many householders, these special tariffs are ending. Their feed-in tariffs will fall precipitously to 4-8 c/kWh, which is the typical rate available to new PV systems. In some cases households may lose over A$1,000 in income over a year.

But while the windback may hurt some households, it may ultimately be a good sign for the industry.

What can households do?

At present, householders with high feed-in tariffs are encouraged to export as much electricity to the grid as possible. These people will soon have an incentive to use this electricity and thereby displace expensive grid electricity. This will minimise loss of income.

Reverse-cycle air conditioning (for space heating and cooling) uses a lot of power that can be programmed to operate during daylight hours when solar panels are most likely to be generating electricity. The same applies to heating water, either by direct heating or through use of a heat pump. For heating water, solar PV is now competitive with gas, solar thermal and electricity from the grid.

Batteries, both stationary (for house services) and mobile (for electric cars), will also help control electricity use in the future.

A boost for the industry?

The ending of generous feed-in tariffs is likely to modestly encourage the solar PV industry. This is because many existing systems have a rating of only 1.5 kilowatts (kW), which could not have been increased without loss of the generous feed-in tariff.

Many householders will now choose to increase the size of their PV system to 5-10kW – in effect a new system given the disparity in average PV sizing between then and now.

A new large-scale PV market is also opening on commercial rooftops. Many businesses have daytime electrical needs that are better matched to solar availability than are domestic dwellings.

This allows businesses to consume the large amounts of the power their panels produce and hence minimise high commercial electricity tariffs. The constraining factors in this market are often not technical or economic, and include the fact that many businesses rent from landlords and tend to have short terms for investment. Business models are being developed to circumvent these constraints.

The rooftop PV market also now has large potential in competing with retail electricity prices. The total cost of a domestic 10kW PV system is about A$15,000. Over a 25-year lifetime this would yield an energy cost of 7 c/kWh.

This is about one-quarter of the typical Australian retail electricity tariff, about half of the off-peak electricity tariff, and similar to the typical retail gas tariff. Rooftop PV delivers energy services to the home more cheaply than anything else and has the capacity to drive natural gas out of domestic and commercial markets.

According to the Australian Bureau of Statistics, there are 9 million dwellings in Australia, and the floor area of new residential dwellings averaged 200 square metres over the past 20 years. Some of these dwellings are in multi-storey blocks, others have shaded roofs and, of course, south-facing roofs are less suitable than other orientations for PV.

However, if half the dwellings had one-third of their roofs covered in 20% efficient PV panels then 60 gigawatts (GW) could be accommodated. For perspective, this would cover 40% of Australian electricity demand. Commercial rooftops are a large additional market.

Solar getting big

Virtually all PV systems in Australia are roof-mounted. However, this is about to change because ground-mounted PV systems are becoming competitive with wind energy. We can see the falling cost of solar in the Queensland Solar 120 scheme, the Australian Capital Territory wind and PV reverse auctions and the Australian Renewable Energy Agency Large Scale Solar program , which all point to the declining cost of PV and wind.

Together, wind and PV constitute virtually all new generation capacity in Australia and half of the new generation capacity installed worldwide each year.

The total cost of a 10-50 megawatt PV system (1,000 times bigger than a 10kW system) is in the range A$2,100/kW (AC). A 25-year lifetime yields an energy cost of 8 c/kWh. This is only a little above the cost of wind energy and is fully competitive with new coal or gas generators.

Hundreds of 10-50MW PV systems can be distributed throughout sunny inland Australia close to towns and high-capacity powerlines. Australia’s 2020 renewable energy target is likely to be met with a large PV component, in addition to wind.

Wide distribution of PV and wind from north Queensland to Tasmania minimises the effect of local weather and takes full advantage of the complementary nature of the two leading renewable energy technologies.

The declining cost of PV and wind, coupled with the ready availability of pumped hydro storage, allows a high renewable electricity fraction (70-100%) to be achieved at modest cost by 2030.

 

Take our Solar Quiz Compare Energy Providers and Save

Download Your FREE Beginner’s Guide To Solar Power!

Beginners Guide to Solar Power

If you’re considering solar for your property or just looking to maximise the savings for your solar system, download a FREE copy of our "Beginner’s Guide To Solar Power".

Become an expert and better understand the ins and outs of solar power and solar PV systems for your property.

Includes detailed explanations and diagrams of the various types of solar systems and their parts, solar battery storage systems, Government incentives, expected ROI periods, finance, energy saving tips and more!

Download Your Free Copy Now!

Latest blog & information

X

Please provide your email address so that we can send your free copy of "Beginner’s Guide To Solar Power".

* By clicking "Send me a copy" I agree to the terms in TQC’s privacy policy.

Thank you

We have emailed your copy of "Beginner’s Guide To Solar Power".

If your guide does not appear in your inbox ensure that you have provided the correct email address or check your junk/spam folder.

This message will close in 10 seconds or

Close and back to page
X

Understanding Batteries

Off-Grid Systems

For some households a battery system can be of great benefit and minimise a home’s reliance on the grid. However, it’s important to understand for a battery to be useful your solar system needs to be generating excess energy for the battery to store, which you can then use at night or when the sun is not out.

When selecting a battery, you’ll want to invest in a system that is most suited to your home and can drive the best return on investment (ROI). Despite a larger upfront cost, a higher quality battery may significantly increase your ROI.

    Battery systems start from $6,000 and costs can vary greatly based on the following factors:

  1. Cycle Life-Time

    The number of times a battery can fully charge and discharge.

  2. Battery Power (kW)

    How fast it can be charged or discharged.

  3. Storage Capacity (kWh)

    The maximum amount of energy a battery system can store.

  4. Battery Management System (BMS)

    An electronic ‘smart’ system that gathers data and manages the battery ensuring it does not overload or operate outside of its safe functioning zone..

  5. Inverter

    Battery systems require their own inverter if your solar system does not have a hybrid inverter.

  6. 'All-In-One Unit’

    A system which includes the battery, BMS and an inverter all in one unit.

  7. Warranty

    Length of time or cycles the battery system is under guarantee.

  8. Blackout Protection/Backup

    It’s important to note this is not a common feature of a battery system and could cost thousands of dollars to include. Blackout protection not only requires additional components but also a specialised installation and rewiring. For grid-connected homes, the cost for blackout protection can outweigh the benefit.

Additionally, if your purpose for adding battery is to go Off-Grid and become completely independent from the grid you will need to ensure your solar system can generate enough energy to power your home and your battery system is large enough to store this energy. For homes in metro areas going Off-grid is not cost effective and is only recommended for those in remote areas with limited access to the grid. Off-grid solar systems with battery start at approximately $30,000.
 

Find the solar system that suits you & its price in 2 mins

Take Our Solar Quiz Take Our Solar Quiz!