Energy solutions but weak on climate – experts react to the Finkel Review

 

The keenly anticipated Finkel Review, commissioned in the wake of last year’s South Australian blackout, has made a range of recommendations aimed at delivering a reliable, secure and sustainable National Electricity Market.

Among the proposals is a new Clean Energy Target to boost investment in low-carbon electricity generation, as well as moves to require high-emitting power stations to give three years’ notice before shutting down.

Below, our experts react to the measures.


“Security and reliability are first”

Hugh Saddler, Honorary Associate Professor, Australian National University

With so much focus on the design of a mechanism to support a shift towards lower-emissions generation, it is easy to forget that the primary purpose of the Review, commissioned following the “system black” event in South Australia on September 28, 2016, was “to develop a national reform blueprint to maintain energy security and reliability”. It is thus appropriate that security and reliability are the first topics to be addressed in the main body of the report.

System security is defined as the ability of the system to tolerate disturbances. Maintaining security requires the system to be able to prevent very high rates of change of frequency. At present the system has no explicit mechanism for doing this, but relies implicitly on the inertia provided, effectively as a free service, by existing large thermal generators.

The report recommends a series of regulatory energy security obligations to provide this service by various additional means, falling on the transmission network service providers in each of the five NEM regions (states), and also on all new generators connecting to the system.

System reliability is defined as the ability of the system to meet consumer demand at all times. In the old system, this is achieved by “dispatchable” generators, meaning coal and gas generators that can vary their output as required to meet demand.

In the new system, with large amounts of variable wind and solar generation, other supply sources are needed to meet demand at times of low wind speed and/or lack of sun – that is, to act as complements to wind and solar. Existing hydro and open-cycle gas turbine generators are ideally suited to this task, but with the growth in wind and solar generation, this capacity will very soon be insufficient for the task across the NEM (and is already insufficient in SA).

The Report recommends what it calls a Generator Reliability Obligation, which would be triggered whenever the proportion of dispatchable generation (which could include batteries and other forms of storage) in a region is falling towards a predetermined minimum acceptable level. The obligation would fall on all new renewable generators wishing to connect thereafter and, in the words of the Report “would not need to be located on site, and could utilise economies of scale” through multiple renewable generation projects “pairing” with “one new large-scale battery of gas fired generation project for example”.

If implemented, this recommendation would seem certain to greatly complicate, slow down and add to the administrative overhead cost of building new renewable generation. It would involve putting together a consortium of multiple parties with potentially differing objectives and who would otherwise be competing with one another in the wholesale electricity market.

A far better approach would be to recognise that dispatchable generation provides a distinct and more valuable product than non-dispatchable generation. There should be a separate market mechanism, possibly based on a contracting approach, to provide this service. If well designed, this would automatically ensure that economies of scale, as may be realised by pumped hydro storage, for example, would be captured. This approach would be far more economically efficient, and thus less costly to electricity consumers, than the messy processes required under the Report’s obligation approach.


“Energy efficiency is effectively handballed to governments”

Alan Pears, Senior Industry Fellow, RMIT University

The Review’s approach to the demand side is very focused. Demand response, the capacity to reduce demand at times of extreme pressure on the supply system, is addressed thoroughly. The past under-utilisation of this approach is acknowledged, and the actions of the Australian Energy Market Operator (AEMO) intended to capture some of its potential in time for next summer are outlined.

However, the deep cultural problems within the Australian Energy Markets Commission regarding demand response are not tackled. Instead, the AEMC is asked (yet again) to develop facilitation mechanisms in the wholesale market by mid-2018.

Energy efficiency is effectively handballed to governments. After making some positive comments about its valuable roles, recommendation 6.10 states that governments “should accelerate the roll out of broader energy efficiency measures to complement the reforms recommended in this Review”.

This is a disappointing outcome, given the enormous untapped potential of energy markets to drive effective energy efficiency improvement. But it clearly shows governments that they have to drive energy-efficiency initiatives unless they instruct energy market participants to act.


“It follows the wrong path on greenhouse emissions”

David Karoly, Professor of Atmospheric Science, University of Melbourne and Member, Climate Change Authority

The Finkel Review says many sensible things about ways to improve the security and reliability of Australia’s electricity sector. However, it follows completely the wrong path in what it says about lower greenhouse emissions from the electricity sector and Australia’s commitments under the Paris Agreement. This is disappointing, as Alan Finkel is Australia’s Chief Scientist and a member of the Climate Change Authority.

All economy-wide modelling shows that the electricity sector must do a larger share of future emissions reductions than other sectors, because there are easier and cheaper solutions for reducing emissions in that sector. However, this review’s vision is for “emissions reduced by 28% below 2005 levels by 2030” – exactly the same as Australia’s target under the Paris Agreement. It should be much more.

Australia’s commitments under the Paris Agreement are “to undertake ambitious efforts” to limit global warming “to well below 2℃ above pre-industrial levels”. The Targets Report from the Climate Change Authority in 2015 showed that this means Australia and the electricity sector must aim for zero emissions before 2050, not in the second half of the century, as suggested in the Finkel Review.

 

Take our Solar Quiz Compare Energy Providers and Save

Download Your FREE Beginner’s Guide To Solar Power!

Beginners Guide to Solar Power

If you’re considering solar for your property or just looking to maximise the savings for your solar system, download a FREE copy of our "Beginner’s Guide To Solar Power".

Become an expert and better understand the ins and outs of solar power and solar PV systems for your property.

Includes detailed explanations and diagrams of the various types of solar systems and their parts, solar battery storage systems, Government incentives, expected ROI periods, finance, energy saving tips and more!

Download Your Free Copy Now!

Latest blog & information

X

Please provide your email address so that we can send your free copy of "Beginner’s Guide To Solar Power".

* By clicking "Send me a copy" I agree to the terms in TQC’s privacy policy.

Thank you

We have emailed your copy of "Beginner’s Guide To Solar Power".

If your guide does not appear in your inbox ensure that you have provided the correct email address or check your junk/spam folder.

This message will close in 10 seconds or

Close and back to page
X

Understanding Batteries

Off-Grid Systems

For some households a battery system can be of great benefit and minimise a home’s reliance on the grid. However, it’s important to understand for a battery to be useful your solar system needs to be generating excess energy for the battery to store, which you can then use at night or when the sun is not out.

When selecting a battery, you’ll want to invest in a system that is most suited to your home and can drive the best return on investment (ROI). Despite a larger upfront cost, a higher quality battery may significantly increase your ROI.

    Battery systems start from $6,000 and costs can vary greatly based on the following factors:

  1. Cycle Life-Time

    The number of times a battery can fully charge and discharge.

  2. Battery Power (kW)

    How fast it can be charged or discharged.

  3. Storage Capacity (kWh)

    The maximum amount of energy a battery system can store.

  4. Battery Management System (BMS)

    An electronic ‘smart’ system that gathers data and manages the battery ensuring it does not overload or operate outside of its safe functioning zone..

  5. Inverter

    Battery systems require their own inverter if your solar system does not have a hybrid inverter.

  6. 'All-In-One Unit’

    A system which includes the battery, BMS and an inverter all in one unit.

  7. Warranty

    Length of time or cycles the battery system is under guarantee.

  8. Blackout Protection/Backup

    It’s important to note this is not a common feature of a battery system and could cost thousands of dollars to include. Blackout protection not only requires additional components but also a specialised installation and rewiring. For grid-connected homes, the cost for blackout protection can outweigh the benefit.

Additionally, if your purpose for adding battery is to go Off-Grid and become completely independent from the grid you will need to ensure your solar system can generate enough energy to power your home and your battery system is large enough to store this energy. For homes in metro areas going Off-grid is not cost effective and is only recommended for those in remote areas with limited access to the grid. Off-grid solar systems with battery start at approximately $30,000.
 

Find the solar system that suits you & its price in 2 mins

Take Our Solar Quiz Take Our Solar Quiz!