The electricity sector needs to cut carbon by 45% by 2030 to keep Australia on track

 

Our new ClimateWorks Australia report, released today, shows that the electricity sector needs to deliver a much greater cut than the 28% emissions reduction modelled in the Finkel Review if Australia is to meet its overall climate target for 2030.

When Australia’s energy ministers meet this Friday to discuss (among other things) the Finkel Review released last month, they will hopefully consider its recommendations for the electricity sector in the broader context of developing a long-term national climate policy.

According to our analysis, the electricity sector should cut emissions by at least 45% by 2030, as part of a move towards net zero emissions by 2050. This is well beyond current government policies, but is crucial if Australia is to meet its climate obligations in an economically responsible way.

Climate commitments

The federal government has agreed to cut emissions by 26-28% on 2005 levels by 2030. As a signatory to the Paris climate agreement, Australia has also committed to global action to limit global warming to well below 2℃ – and as a developed nation, that means reaching net zero emissions across the whole economy by about 2050.

Our analysis suggests that the electricity sector will need do a larger share than other sectors of the economy, because it has more technical potential to do so and can support emissions reductions in other sectors. In practice, reaching net zero emissions means shifting from coal and other fossil fuels to zero- or near-zero-carbon energy sources such as renewable electricity and bioenergy. Coal or gas will only be feasible if fitted with carbon capture and storage. Achieving near zero-emissions electricity is a key step in the transition to a net zero-emissions economy, not least because of the future importance of electrically powered transport.

The good news is that our previous research has shown that this is achievable with existing technologies, thanks to Australia’s rich renewable resources.

CSIRO and Energy Networks Australia have also shown that the electricity sector can reach zero emissions by 2050 while still maintaining security and reliability, and that this will actually save households an estimated A$414 a year compared with business as usual.

The 2030 target matters

Cutting emissions faster now will make it easier and less economically disruptive to reach net zero by 2050. Yet the latest government emissions projections forecast that Australia’s emissions will grow by 9% by the end of the next decade, from 543 megatonnes of carbon dioxide equivalent (CO₂e) in 2016 to 592Mt CO2e in 2030.

If the impact of existing policies (such as the National Energy Productivity Plan, the phase-down of hydroflurocarbon emissions, and state renewable energy targets) are taken into account in the projections, emissions could drop to 531Mt CO2e in 2030. This still leaves an 82-megatonne gap to reach even the minimum emissions reduction target of 26% percent below 2005 levels.

Time to do more

Our report, Power Up: Australia’s electricity sector can and should do more to deliver on our climate commitments shows that Australia’s electricity sector can cut emissions by up to 60% below 2005 levels by 2030. This is nearly six times more carbon reduction than is expected to be delivered by current policies, and could by itself fill the whole emissions reduction gap.

However, should the electricity sector only make a 28% reduction in its emissions, in line with the Finkel analysis, then it would only reduce emissions by 6Mt CO2e beyond current policies, leaving most of the effort of reducing emissions to other sectors such as buildings, transport, industry, waste and land management, where cutting carbon is likely to be significantly more expensive.

To reach this level of emissions reductions in the land sector, for instance, we would need to increase forest planting by more than three times the amount estimated to be delivered by the federal government’s Emission Reduction Fund in 2018, its peak year.

In its defence, the Finkel Review focused exclusively on the electricity sector and its analysis did not look at the impact that limited change in this sector would have on the required effort from other parts of the economy.

We therefore modelled various other scenarios, including one in which the share of renewables increases from 40% to 50% by 2030. This could enable the electricity sector to achieve double the carbon reductions delivered by efforts in line with the Finkel review.

Our third and fourth scenarios are aimed at meeting the more ambitious emissions target range recommended by the Climate Change Authority, corresponding to a more progressive and therefore economically responsible trajectory towards net zero emissions. This requires Australia achieving a 45-60% reduction in emissions from the electricity sector by 2030.

Emission Reduction Scenarios

 
Expected emissions reductions by 2030 (in megatonnes CO₂ equivalent) in four different policy areas under four different electricity scenarios.ClimateWorks AustraliaAuthor provided

The long view

Like the Finkel Review, our report recommends that the federal government defines a specific emissions-reduction policy for the electricity sector, which in Finkel’s case was the Clean Energy Target. This will help to ensure a smooth shift to reliable, affordable, low-carbon energy.

Our report outlines the key principles that Australian governments need to consider in order to make effective decisions on climate change policy, with a view to achieving net zero emissions by mid-century.

These include providing clear long-term direction to support the industry’s investment decisions, and ensuring that decision-making to 2030 is compatible with reaching net zero emissions by 2050.

Climate policy should also be flexible so that it can be scaled up to meet future targets and allow a range of solutions, including the uptake of emerging technologies to make the transition faster and cheaper.

Given that net zero emissions is the ultimate goal, we need to move faster and achieve greater emissions reductions by 2030 to help deliver a fully decarbonised electricity system, on time and on budget.

 

Take our Solar Quiz Compare Energy Providers and Save

Download Your FREE Beginner’s Guide To Solar Power!

Beginners Guide to Solar Power

If you’re considering solar for your property or just looking to maximise the savings for your solar system, download a FREE copy of our "Beginner’s Guide To Solar Power".

Become an expert and better understand the ins and outs of solar power and solar PV systems for your property.

Includes detailed explanations and diagrams of the various types of solar systems and their parts, solar battery storage systems, Government incentives, expected ROI periods, finance, energy saving tips and more!

Download Your Free Copy Now!

Latest blog & information

X

Please provide your email address so that we can send your free copy of "Beginner’s Guide To Solar Power".

* By clicking "Send me a copy" I agree to the terms in TQC’s privacy policy.

Thank you

We have emailed your copy of "Beginner’s Guide To Solar Power".

If your guide does not appear in your inbox ensure that you have provided the correct email address or check your junk/spam folder.

This message will close in 10 seconds or

Close and back to page
X

Understanding Batteries

Off-Grid Systems

For some households a battery system can be of great benefit and minimise a home’s reliance on the grid. However, it’s important to understand for a battery to be useful your solar system needs to be generating excess energy for the battery to store, which you can then use at night or when the sun is not out.

When selecting a battery, you’ll want to invest in a system that is most suited to your home and can drive the best return on investment (ROI). Despite a larger upfront cost, a higher quality battery may significantly increase your ROI.

    Battery systems start from $6,000 and costs can vary greatly based on the following factors:

  1. Cycle Life-Time

    The number of times a battery can fully charge and discharge.

  2. Battery Power (kW)

    How fast it can be charged or discharged.

  3. Storage Capacity (kWh)

    The maximum amount of energy a battery system can store.

  4. Battery Management System (BMS)

    An electronic ‘smart’ system that gathers data and manages the battery ensuring it does not overload or operate outside of its safe functioning zone..

  5. Inverter

    Battery systems require their own inverter if your solar system does not have a hybrid inverter.

  6. 'All-In-One Unit’

    A system which includes the battery, BMS and an inverter all in one unit.

  7. Warranty

    Length of time or cycles the battery system is under guarantee.

  8. Blackout Protection/Backup

    It’s important to note this is not a common feature of a battery system and could cost thousands of dollars to include. Blackout protection not only requires additional components but also a specialised installation and rewiring. For grid-connected homes, the cost for blackout protection can outweigh the benefit.

Additionally, if your purpose for adding battery is to go Off-Grid and become completely independent from the grid you will need to ensure your solar system can generate enough energy to power your home and your battery system is large enough to store this energy. For homes in metro areas going Off-grid is not cost effective and is only recommended for those in remote areas with limited access to the grid. Off-grid solar systems with battery start at approximately $30,000.
 

Find the solar system that suits you & its price in 2 mins

Take Our Solar Quiz Take Our Solar Quiz!